- Assertion testing
- Asynchronous context tracking
- Async hooks
- Buffer
- C++ addons
- C/C++ addons with Node-API
- C++ embedder API
- Child processes
- Cluster
- Command-line options
- Console
- Corepack
- Crypto
- Debugger
- Deprecated APIs
- Diagnostics Channel
- DNS
- Domain
- Errors
- Events
- File system
- Globals
- HTTP
- HTTP/2
- HTTPS
- Inspector
- Internationalization
- Modules: CommonJS modules
- Modules: ECMAScript modules
- Modules:
node:module
API - Modules: Packages
- Net
- OS
- Path
- Performance hooks
- Policies
- Process
- Punycode
- Query strings
- Readline
- REPL
- Report
- Stream
- String decoder
- Test runner
- Timers
- TLS/SSL
- Trace events
- TTY
- UDP/datagram
- URL
- Utilities
- V8
- VM
- WASI
- Web Crypto API
- Web Streams API
- Worker threads
- Zlib
Node.js v19.0.0-v8-canary202206019e1c3f6f9f documentation
- Node.js v19.0.0-v8-canary202206019e1c3f6f9f
- ► Table of contents
-
►
Index
- Assertion testing
- Asynchronous context tracking
- Async hooks
- Buffer
- C++ addons
- C/C++ addons with Node-API
- C++ embedder API
- Child processes
- Cluster
- Command-line options
- Console
- Corepack
- Crypto
- Debugger
- Deprecated APIs
- Diagnostics Channel
- DNS
- Domain
- Errors
- Events
- File system
- Globals
- HTTP
- HTTP/2
- HTTPS
- Inspector
- Internationalization
- Modules: CommonJS modules
- Modules: ECMAScript modules
- Modules:
node:module
API - Modules: Packages
- Net
- OS
- Path
- Performance hooks
- Policies
- Process
- Punycode
- Query strings
- Readline
- REPL
- Report
- Stream
- String decoder
- Test runner
- Timers
- TLS/SSL
- Trace events
- TTY
- UDP/datagram
- URL
- Utilities
- V8
- VM
- WASI
- Web Crypto API
- Web Streams API
- Worker threads
- Zlib
- ► Other versions
- ► Options
Table of contents
Test runner#
Source Code: lib/test.js
The node:test
module facilitates the creation of JavaScript tests that
report results in TAP format. To access it:
import test from 'node:test';
const test = require('node:test');
This module is only available under the node:
scheme. The following will not
work:
import test from 'test';
const test = require('test');
Tests created via the test
module consist of a single function that is
processed in one of three ways:
- A synchronous function that is considered failing if it throws an exception, and is considered passing otherwise.
- A function that returns a
Promise
that is considered failing if thePromise
rejects, and is considered passing if thePromise
resolves. - A function that receives a callback function. If the callback receives any
truthy value as its first argument, the test is considered failing. If a
falsy value is passed as the first argument to the callback, the test is
considered passing. If the test function receives a callback function and
also returns a
Promise
, the test will fail.
The following example illustrates how tests are written using the
test
module.
test('synchronous passing test', (t) => {
// This test passes because it does not throw an exception.
assert.strictEqual(1, 1);
});
test('synchronous failing test', (t) => {
// This test fails because it throws an exception.
assert.strictEqual(1, 2);
});
test('asynchronous passing test', async (t) => {
// This test passes because the Promise returned by the async
// function is not rejected.
assert.strictEqual(1, 1);
});
test('asynchronous failing test', async (t) => {
// This test fails because the Promise returned by the async
// function is rejected.
assert.strictEqual(1, 2);
});
test('failing test using Promises', (t) => {
// Promises can be used directly as well.
return new Promise((resolve, reject) => {
setImmediate(() => {
reject(new Error('this will cause the test to fail'));
});
});
});
test('callback passing test', (t, done) => {
// done() is the callback function. When the setImmediate() runs, it invokes
// done() with no arguments.
setImmediate(done);
});
test('callback failing test', (t, done) => {
// When the setImmediate() runs, done() is invoked with an Error object and
// the test fails.
setImmediate(() => {
done(new Error('callback failure'));
});
});
As a test file executes, TAP is written to the standard output of the Node.js
process. This output can be interpreted by any test harness that understands
the TAP format. If any tests fail, the process exit code is set to 1
.
Subtests#
The test context's test()
method allows subtests to be created. This method
behaves identically to the top level test()
function. The following example
demonstrates the creation of a top level test with two subtests.
test('top level test', async (t) => {
await t.test('subtest 1', (t) => {
assert.strictEqual(1, 1);
});
await t.test('subtest 2', (t) => {
assert.strictEqual(2, 2);
});
});
In this example, await
is used to ensure that both subtests have completed.
This is necessary because parent tests do not wait for their subtests to
complete. Any subtests that are still outstanding when their parent finishes
are cancelled and treated as failures. Any subtest failures cause the parent
test to fail.
Skipping tests#
Individual tests can be skipped by passing the skip
option to the test, or by
calling the test context's skip()
method. Both of these options support
including a message that is displayed in the TAP output as shown in the
following example.
// The skip option is used, but no message is provided.
test('skip option', { skip: true }, (t) => {
// This code is never executed.
});
// The skip option is used, and a message is provided.
test('skip option with message', { skip: 'this is skipped' }, (t) => {
// This code is never executed.
});
test('skip() method', (t) => {
// Make sure to return here as well if the test contains additional logic.
t.skip();
});
test('skip() method with message', (t) => {
// Make sure to return here as well if the test contains additional logic.
t.skip('this is skipped');
});
only
tests#
If Node.js is started with the --test-only
command-line option, it is
possible to skip all top level tests except for a selected subset by passing
the only
option to the tests that should be run. When a test with the only
option set is run, all subtests are also run. The test context's runOnly()
method can be used to implement the same behavior at the subtest level.
// Assume Node.js is run with the --test-only command-line option.
// The 'only' option is set, so this test is run.
test('this test is run', { only: true }, async (t) => {
// Within this test, all subtests are run by default.
await t.test('running subtest');
// The test context can be updated to run subtests with the 'only' option.
t.runOnly(true);
await t.test('this subtest is now skipped');
await t.test('this subtest is run', { only: true });
// Switch the context back to execute all tests.
t.runOnly(false);
await t.test('this subtest is now run');
// Explicitly do not run these tests.
await t.test('skipped subtest 3', { only: false });
await t.test('skipped subtest 4', { skip: true });
});
// The 'only' option is not set, so this test is skipped.
test('this test is not run', () => {
// This code is not run.
throw new Error('fail');
});
Extraneous asynchronous activity#
Once a test function finishes executing, the TAP results are output as quickly as possible while maintaining the order of the tests. However, it is possible for the test function to generate asynchronous activity that outlives the test itself. The test runner handles this type of activity, but does not delay the reporting of test results in order to accommodate it.
In the following example, a test completes with two setImmediate()
operations still outstanding. The first setImmediate()
attempts to create a
new subtest. Because the parent test has already finished and output its
results, the new subtest is immediately marked as failed, and reported in the
top level of the file's TAP output.
The second setImmediate()
creates an uncaughtException
event.
uncaughtException
and unhandledRejection
events originating from a completed
test are handled by the test
module and reported as diagnostic warnings in
the top level of the file's TAP output.
test('a test that creates asynchronous activity', (t) => {
setImmediate(() => {
t.test('subtest that is created too late', (t) => {
throw new Error('error1');
});
});
setImmediate(() => {
throw new Error('error2');
});
// The test finishes after this line.
});
Running tests from the command line#
The Node.js test runner can be invoked from the command line by passing the
--test
flag:
node --test
By default, Node.js will recursively search the current directory for JavaScript source files matching a specific naming convention. Matching files are executed as test files. More information on the expected test file naming convention and behavior can be found in the test runner execution model section.
Alternatively, one or more paths can be provided as the final argument(s) to the Node.js command, as shown below.
node --test test1.js test2.mjs custom_test_dir/
In this example, the test runner will execute the files test1.js
and
test2.mjs
. The test runner will also recursively search the
custom_test_dir/
directory for test files to execute.
Test runner execution model#
When searching for test files to execute, the test runner behaves as follows:
- Any files explicitly provided by the user are executed.
- If the user did not explicitly specify any paths, the current working directory is recursively searched for files as specified in the following steps.
node_modules
directories are skipped unless explicitly provided by the user.- If a directory named
test
is encountered, the test runner will search it recursively for all all.js
,.cjs
, and.mjs
files. All of these files are treated as test files, and do not need to match the specific naming convention detailed below. This is to accommodate projects that place all of their tests in a singletest
directory. - In all other directories,
.js
,.cjs
, and.mjs
files matching the following patterns are treated as test files:^test$
- Files whose basename is the string'test'
. Examples:test.js
,test.cjs
,test.mjs
.^test-.+
- Files whose basename starts with the string'test-'
followed by one or more characters. Examples:test-example.js
,test-another-example.mjs
..+[\.\-\_]test$
- Files whose basename ends with.test
,-test
, or_test
, preceded by one or more characters. Examples:example.test.js
,example-test.cjs
,example_test.mjs
.- Other file types understood by Node.js such as
.node
and.json
are not automatically executed by the test runner, but are supported if explicitly provided on the command line.
Each matching test file is executed in a separate child process. If the child
process finishes with an exit code of 0, the test is considered passing.
Otherwise, the test is considered to be a failure. Test files must be
executable by Node.js, but are not required to use the node:test
module
internally.
test([name][, options][, fn])
#
name
<string> The name of the test, which is displayed when reporting test results. Default: Thename
property offn
, or'<anonymous>'
iffn
does not have a name.options
<Object> Configuration options for the test. The following properties are supported:concurrency
<number> The number of tests that can be run at the same time. If unspecified, subtests inherit this value from their parent. Default:1
.only
<boolean> If truthy, and the test context is configured to runonly
tests, then this test will be run. Otherwise, the test is skipped. Default:false
.skip
<boolean> | <string> If truthy, the test is skipped. If a string is provided, that string is displayed in the test results as the reason for skipping the test. Default:false
.todo
<boolean> | <string> If truthy, the test marked asTODO
. If a string is provided, that string is displayed in the test results as the reason why the test isTODO
. Default:false
.
fn
<Function> | <AsyncFunction> The function under test. This first argument to this function is aTestContext
object. If the test uses callbacks, the callback function is passed as the second argument. Default: A no-op function.- Returns: <Promise> Resolved with
undefined
once the test completes.
The test()
function is the value imported from the test
module. Each
invocation of this function results in the creation of a test point in the TAP
output.
The TestContext
object passed to the fn
argument can be used to perform
actions related to the current test. Examples include skipping the test, adding
additional TAP diagnostic information, or creating subtests.
test()
returns a Promise
that resolves once the test completes. The return
value can usually be discarded for top level tests. However, the return value
from subtests should be used to prevent the parent test from finishing first
and cancelling the subtest as shown in the following example.
test('top level test', async (t) => {
// The setTimeout() in the following subtest would cause it to outlive its
// parent test if 'await' is removed on the next line. Once the parent test
// completes, it will cancel any outstanding subtests.
await t.test('longer running subtest', async (t) => {
return new Promise((resolve, reject) => {
setTimeout(resolve, 1000);
});
});
});
Class: TestContext
#
An instance of TestContext
is passed to each test function in order to
interact with the test runner. However, the TestContext
constructor is not
exposed as part of the API.
context.diagnostic(message)
#
message
<string> Message to be displayed as a TAP diagnostic.
This function is used to write TAP diagnostics to the output. Any diagnostic information is included at the end of the test's results. This function does not return a value.
context.runOnly(shouldRunOnlyTests)
#
shouldRunOnlyTests
<boolean> Whether or not to runonly
tests.
If shouldRunOnlyTests
is truthy, the test context will only run tests that
have the only
option set. Otherwise, all tests are run. If Node.js was not
started with the --test-only
command-line option, this function is a
no-op.
context.skip([message])
#
message
<string> Optional skip message to be displayed in TAP output.
This function causes the test's output to indicate the test as skipped. If
message
is provided, it is included in the TAP output. Calling skip()
does
not terminate execution of the test function. This function does not return a
value.
context.todo([message])
#
message
<string> OptionalTODO
message to be displayed in TAP output.
This function adds a TODO
directive to the test's output. If message
is
provided, it is included in the TAP output. Calling todo()
does not terminate
execution of the test function. This function does not return a value.
context.test([name][, options][, fn])
#
name
<string> The name of the subtest, which is displayed when reporting test results. Default: Thename
property offn
, or'<anonymous>'
iffn
does not have a name.options
<Object> Configuration options for the subtest. The following properties are supported:concurrency
<number> The number of tests that can be run at the same time. If unspecified, subtests inherit this value from their parent. Default:1
.only
<boolean> If truthy, and the test context is configured to runonly
tests, then this test will be run. Otherwise, the test is skipped. Default:false
.skip
<boolean> | <string> If truthy, the test is skipped. If a string is provided, that string is displayed in the test results as the reason for skipping the test. Default:false
.todo
<boolean> | <string> If truthy, the test marked asTODO
. If a string is provided, that string is displayed in the test results as the reason why the test isTODO
. Default:false
.
fn
<Function> | <AsyncFunction> The function under test. This first argument to this function is aTestContext
object. If the test uses callbacks, the callback function is passed as the second argument. Default: A no-op function.- Returns: <Promise> Resolved with
undefined
once the test completes.
This function is used to create subtests under the current test. This function
behaves in the same fashion as the top level test()
function.